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The infinite-disorder fixed point of the random transverse-field Ising model is expected to control the critical
behavior of a large class of random quantum and stochastic systems having an order parameter with discrete
symmetry. Here we study the model on the square lattice with a very efficient numerical implementation of the
strong disorder renormalization group method, which makes us possible to treat finite samples of linear size up
to L=2048. We have calculated sample dependent pseudocritical points and studied their distribution, which is
found to be characterized by the same shift and width exponent: v=1.24(2). For different types of disorder the
infinite-disorder fixed point is shown to be characterized by the same set of critical exponents, for which we
have obtained improved estimates: x=0.982(15) and ¢=0.48(2). We have also studied the scaling behavior of
the magnetization in the vicinity of the critical point as well as dynamical scaling in the ordered and disordered

Griffiths phases.
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I. INTRODUCTION

The random transverse-field Ising (RTFI) model is the
prototype of random quantum systems' having a quantum
critical point at zero temperature.> This model has experi-
mental realizations® and there is a large amount of theoretical
work, which aims to clarify the properties of the random
critical point. It is expected that basic features of the critical
behavior are demonstrated in the one-dimensional (1D)
model and therefore most of the theoretical studies are per-
formed in 1D. After early works by McCoy and others,*>
Fisher® has used a renormalization group (RG) framework to
obtain several presumably exact results about its critical
properties. It has been shown that the critical properties of
the 1D model are governed by a so-called infinite-disorder
fixed point (IDFP) in which the strength of disorder grows
without limit during renormalization.” As a consequence dis-
order fluctuations are dominated over quantum fluctuations
and the approximations used in the RG approach become
exact at the critical point. The IDFP of the RTFI model is
shown to govern the critical properties of another random
quantum systems having an order parameter with discrete
symmetry.®° Furthermore this fixed point is found to be iso-
morphic with that of several 1D stochastic models, such as
the Sinai walk,!® the random contact process,'! or the ran-
dom exclusion process.'?

Comparatively less results are available about the critical
behavior of the RTFI model in higher dimensions, which are
almost exclusively restricted to two dimensions (2D). By
now different numerical studies are in favor of the conclu-
sion, that also in 2D the critical behavior is controlled by an
IDFP. In this respect we mention different numerical
implementations'>!° of the strong disorder RG (SDRG)
method, as well quantum Monte Carlo simulations.!® These
results are in agreement with recent simulation studies of the
2D random contact process,?’ which is expected to belong to
the same universality class. Also the 2D random walk in a
self-affine random potential’! could be related to the 2D
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RTFI model. As far as the numerical estimates of the critical
exponents in 2D are concerned, these contain quite large
errors, for a summary of the estimates see Ref. 18. In simu-
lation studies these are connected to the logarithmically slow
critical relaxation, whereas in the SDRG method the errors
has mainly finite size origin the typical linear size of the
largest systems being about L=128-160. Also the type of
disorder used in the calculations has an influence on the error
of the results. Due to these numerical limitations there are no
quantitative results in three dimensions, although it is very
probable that the random critical point is an IDFP in this
case, t00.!3

In this paper we are going to revisit the problem of the
critical behavior of the 2D RTFI model. Like other studies
we use numerical implementation of the SDRG method,
however we have developed a very efficient algorithm,
which make us possible to treat systems as large as L
=2048. In this way the number of sites in our samples are
several hundred larger than in previous studies. Comparing
with earlier SDRG investigations our study has several dif-
ferent features. (i) We define and calculate finite-size pseud-
ocritical points and study their distribution. (ii) We obtain
accurate estimates for the true critical point of the model,
calculate effective, size-dependent critical exponents, and
study their extrapolation. (iii) We consider different forms of
the disorder and study the universality of the critical expo-
nents as well as the scaling functions. (iv) We also study
scaling outside the critical point, as well as dynamical scal-
ing in the disordered and ordered Griffiths phases.

The structure of the rest of the paper is the following. The
model and the SDRG method are presented in Sec. II. The
basic features of the computer algorithm are discussed in
Sec. III. In Sec. IV we describe how finite-size transition
points are defined and calculated within the frame of the
SDRG method. We study their distribution and analyze the
shift of the mean value as well as the width as a function of
the size of the system. In Sec. V critical exponents are ex-
tracted through finite-size scaling and the scaling behavior
outside the critical point is analyzed. We also study dynami-
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cal scaling in the disordered and in the ordered Griffiths
phases. Our results are discussed in the final section, whereas
some details of the computer algorithm are presented in the
Appendix.

II. MODEL AND THE SDRG METHOD
A. Random transverse-field Ising model

We consider the RTFI model defined by the Hamiltonian,

H==2 1 0l0] - 2 hor (1)
(ij) i
in terms of the Pauli matrices, o‘fz Here i and j are sites of
a square lattice and the first sum runs over nearest neighbors.
The J;; couplings and the h; transverse fields are independent
random numbers, which are taken from the distributions,
p(J) and g(h), respectively.
Here we use two different type of distributions, which
have both the same uniform distribution of the couplings,

p()=0)6(1-J), (2)

O(x) being the Heaviside step function. For the “box-h” dis-
order we have

) = -0 (h,~ 1), 3)
b

whereas for the “fixed-A” model we have a constant trans-
verse field

q(h) = 8(hy—h). (4)

In the following we use the logarithmic transverse field
0=1In h;, or 6=In hy to characterize the system. In the ther-
modynamic limit, L— o, the system in Eq. (1) displays a
paramagnetic phase, for #> 6., and a ferromagnetic phase,
for #<@.. In between there is a random quantum critical
point at #=6,.. The quantum control parameter is defined as
0=6-6,.

B. Strong disorder renormalization group method

Here we use the SDRG method,?? which has been intro-
duced by Ma et al.?® and later developed by Fisher® and
others. During the method, the largest local term in the
Hamiltonian (which defines the energy scale, (), at the given
RG step) is successively eliminated and at the same time
new terms are generated between remaining sites by second-
order perturbation method. The procedure is sketched in Fig.
1 for a higher dimensional system. If the largest term is a
coupling (see the right panel of Fig. 1), say (1=J,;, connect-
ing sites i and j, then the two sites involved form a spin
cluster with an effective moment wu'=pu;+u; (initially wu;
=1Vi) in the presence of an effective transverse field: i’
~h;h;/J;;. The renormalized value of the coupling of the
cluster to a site a is given by the “maximum rule”
max[J,;,J,;]. On the other hand, if the largest local term is a
transverse field (see the left panel of Fig. 1), say Q) =h,, then
site i is eliminated and effective couplings are generated be-
tween each pairs of spins, among the neighbors of i. If a and
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Q= h;

a Jad d
h;
b ‘ c
a_j d
J’'
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J’ = Jn,inz/hi J’ = maX(Jm',, Jn,j)

j: max(],,,d, Jaini/hi) h/ = h,h]‘/Ji]‘
FIG. 1. (Color online) Illustration of the decimation steps of the
strong disorder renormalization group method in higher dimensions.

b are neighboring spins to i, then the generated coupling is
given by J!, =JiJ,i/ h;. If the sites a and b are already con-
nected by a coupling, J,;, # 0, then the renormalized coupling
is given by the “maximum rule” as max[J,;,,J,]. The use of
the maximum rule is justified if the renormalized couplings
have a very broad distribution, which is indeed the case at
the IDFP. We shall see that with the maximum rule the nu-
merical algorithm can be simplified. At each step of the
renormalization one site is eliminated and the energy scale is
continuously lowered. For a finite system the renormaliza-
tion is stopped at the last site, where we keep the energy
scale and the total moment of the clusters.?*

C. Scaling at the infinite-disorder fixed point

At the IDFP the distribution of the effective couplings and
that of the transverse fields becomes broader and broader
during the renormalization.”??> Considering the ratio of two
effective terms in the Hamiltonian at a given stage of the
SDRG it will tend either to infinity or to zero. This indicates
that the disorder is infinitely strong and the perturbative re-
sults during the RG are exact. Qualitatively the log-energy
scale, In (), scales with the linear size of the system size, L,

In(Qy/Q) ~ LY, (5)

where (), denotes a reference energy scale. The average
spin-spin correlation function is defined as G(r)=(o;o7},,),
where (- - -) denotes the ground-state average and (- ) stands
for the averaging over quenched disorder. The asymptotic
value of the correlation function defines the magnetization,
m, in the system

lim G(r) = m? (6)

r—

and m>0 in the ferromagnetic phase and m=0 in the para-

magnetic phase. The connected correlation function, G(r)
=G(r)—m?, in the vicinity of the critical point behaves as

G(r) ~ r> exp(-r/d), (7)

where the correlation length, ¢, is divergent at the critical
point as
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E~ 1o (8)

Thus at 6=0 there is a power-law decay of the correlations,
which is related to the fractal structure of the spin clusters.
Indeed, the average cluster moment, w, is related to the en-
ergy scale, (), as

w1~ [In(Qy/ Q)] )
and can be expressed also with the size

Here the fractal dimension of the cluster, df, is related to the
other exponents as

di=¢y=d-x. (11)
In 1D the critical exponents are exactly known*®
1 V541 3-15
=_, = N = 2, = 12
¥ 5 ¢ 5 v x=— (12)

III. IMPLEMENTATION OF THE SDRG METHOD
A. Problems with the naive implementation

The SDRG decimation rules are very simple and it is
straightforward to implement the method numerically. In
higher dimensions, however, the topology of the lattice is
changing during renormalization, which could result in con-
siderable increase in the computational time. More danger-
ous steps in this respect are the 4 decimations, during which
numerous new bonds are generated and as a result sites with
large number of links are formed. In this way, after a naive
implementation of the method, the system is transformed
into an almost complete graph and the subsequent /& decima-
tions, generating new links between practically all pair of
sites, will be very slow. For a system with N sites this algo-
rithm would need O(N?) time.

Using the maximum rule in the approach, however, offers
two ways to speed up the procedure.” First, one can notice
that the renormalization trajectory is not unique in this case.
There are terms in the Hamiltonian, which are called as “lo-
cal maxima” and which can be decimated independently.
Thus one should not follow the “decimation of the largest
term in each step” principle, instead we are going to optimize
the time of the renormalization trajectory, which goes over in
some order of the local maxima. The second consequence of
the maximum rule is that a large number of bonds will never
be participating in the renormalization process. These latent
bonds can be deleted from the list of edges without conse-
quences. The latent bonds are in such a local environment
that after decimating a nearby site or bond a stronger new
coupling is generated to the same edge, thus the original
bond disappears without participating in the renormalization.
Filtering out these irrelevant bonds will result in a consider-
able improvement of the algorithm. In the following we dis-
cuss the properties of the local maxima and the optimal RG
trajectory as well as the main features of the filtering process.
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FIG. 2. (Color online) Illustration of the filtering criterion.

After filtering

B. Local maxima and the optimal RG trajectory

According to our definition a local maximum in the set of
couplings and transverse fields is such a term, which is larger
(not smaller) than any of its neighboring terms. Considering
a coupling J;; is a local maximum, provided J;;=h;, J;;=h;,
and J;;=Jy, Vk, as well as J;;=J;;, V1. Similarly a trans-
verse field, &, is a local maximum, if hizjij, Vj. It can be
shown that the local maxima can be decimated indepen-
dently, the renormalization performed in any sequence gives
the same final result.

To outline the proof of this statement first we mention that
two local maxima cannot be in nearest-neighbor position and
if these are more remote than next-nearest neighbors, then
the proof is trivial. Special care is needed if the two local
maxima are next-nearest neighbors having one or more
edges in common. Considering the three different cases sepa-
rately (two local & maxima; two local J maxima; one local &
maximum and one local J maximum) with direct calculation
one can show that the decimations of local maxima indeed
commute.

C. Filtering out irrelevant bonds

The principle, that some bonds are irrelevant and do not
modify the renormalization procedure has been first realized
by Kawashima.?® He has also suggested a criterion to iden-
tify the irrelevant bonds which are then deleted from the
graph. This filtering procedure as illustrated in Fig. 2 is used
in a few 2D numerical works.!>!%13 In the Appendix we give
the proper definition of the filtering criterion and prove it.

The use of the filtering criterion for a site with k neigh-
bors needs typically O(k®) time since O(k?) triangles have to
be checked. However, the application of the filtering makes
not too much reduction in the computational time, if the
bond is in a general position, where not too many new terms
are generated after consecutive RG steps. There are, how-
ever, bonds in “dangerous positions,” having at least one of
the neighboring transverse fields as a local maximum. Deci-
mating this local maximum many new terms are generated
and therefore the use of prefiltering, which checks the bonds
of the decimated spin just before its decimation is very ef-
fective, which typically needs only O(k?) time.

D. Basic steps in the numerical SDRG method

In order to obtain an efficient implementation of the
SDRG method we combine the optimal selection of the RG
trajectory with the filtering algorithm. In our method we use
the following steps.

(1) We check all terms of the Hamiltonian and select the
local maxima. We make two lists, one for the couplings and
one for the transverse fields.
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(2) We decimate every coupling, which is on the list of
local maxima. In this step the order of the decimation is
arbitrary. After decimating the original couplings new terms
are generated, among which there are new local maxima. We
include those into the list of local maxima and at the same
time we decimate the new couplings from this list. We repeat
this step, until the list of local maximum couplings is empty.

(3) If all or all but one the transverse fields are local
maxima we select the smallest one, delete all the rest sites,
and END the iteration. Otherwise we select a transverse field
from the list of local maxima having a small (or the smallest)
degree, which is defined as the number of edges to the given
site and filter for the neighboring bonds. We decimate this
transverse field and check the generated new terms for local
maxima. If the list of local maximum couplings is not empty,
we go to step 2. Otherwise we go to step 3.

Using the selection rule in the second part of step 3 will
ensure that the average degree of the sites will not be large.
In this way we prevent the formation of too connected clus-
ters, the decimation of which being time consuming. In step
3 making the filtering before decimation (prefiltering) will
ensure that the dangerous bonds are deleted.

This algorithm in 2D works typically in O(L? In L) time
in a L X L system near the critical point. With our method an
L=128 sample is renormalized in ~1 s, whereas for L
=1024 the typical time is ~1.5 min (in a 2.4 GHz proces-
sor).

IV. FINITE-SIZE CRITICAL POINTS
A. Scaling of pseudocritical points

In the study of the critical behavior of random systems it
is very important to find an accurate estimate of the location
of the critical point. The quality of the estimate of 6, will
influence the error of the calculated critical exponents and
scaling functions. In a random sample of linear size, L, one
can generally define finite-size pseudocritical points,?’—?
0.(L), which are usually given as the position of the maxi-
mum of some physical quantity, which is divergent in the
thermodynamic limit (cf. susceptibility) at 6,.. The distribu-
tion of 6.(L) provides important information about the scal-
ing behavior at the fixed point of the system.?’ In particular,
one studies the shift of the average value, 6,.(L), which is
expected to scale as

16, 6.(L)| ~ L% (13)

with the shift exponent, v,. Similarly, one measures the width
of the distribution, A6,(L), which behaves for large L as

A6 (L) ~ L™V"w, (14)

where v,, denotes the width exponent. According to renor-
malization group theory?’ for a classical random system with
relevant disorder®® the critical behavior is controlled by a
conventional random fixed point, with v,=v,=v, where v
=2/d (Ref. 34) is the correlation-length critical exponent of
the system.
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FIG. 3. (Color online) Illustration of the boundary conditions
used in the doubling procedure in higher dimensions.

B. Identification of pseudocritical points

In a random quantum system one has to use another meth-
ods to locate pseudocritical points.>> One method, which is
well suited to the SDRG approach is the doubling method,*
which has been used for chains®> and for ladders'® of the
RTFI model. In the doubling procedure in 1D (or quasi-1D)
geometry one considers a random sample («) of length, L,
and makes a duplicated sample (2a) of length 2L by joining
two copies of (@). Using the SDRG method one calculates
some physical quantity (magnetization or gap) in the original
and in the replicated sample, which is denoted by f(«,L) and
fQa,2L), respectively, and study their ratio, r(a,L)
=f(2a,2L)/f(a,L), as a function of the control parameter, 6.
At 6=6.(a,L) this ratio has a sudden jump, which is identi-
fied with the pseudocritical point of the sample. We note that
the actual value of 6.(a,L) is practically independent of the
physical quantity we considered!® since this singularity is
connected to the topology of clusters produced by the SDRG
approach.

Having this observation in mind we can generalize the
doubling method for two (and higher) dimensions. In 2D we
glue together two identical square-shaped samples at the
boundaries as indicated in Fig. 3. Then we renormalize the
duplicated sample and calculate the structure of the con-
nected clusters, among which there might be such, which
have sites (in equivalent positions) in both replicas. These
sites are correlated and the fraction of these correlated sites
defines the correlation function between the replicas. By in-
creasing the control parameter, 6, the replica correlation
function is decreasing and at a well-defined value, 6,(L), it
suddenly jumps to zero. We consider 6,(L) as the pseud-
ocritical point of the given sample. It is easy to see that this
definition is equivalent to the previously used criterion in
1D, furthermore it is straightforward to generalize it to three
and higher dimensions.

C. Numerical results
1. Distribution of pseudocritical points

We have calculated pseudocritical points of square-shaped
samples for various linear sizes, L, which are expressed as
L=2"and L=3X2""" up to /=10. Generally we have consid-
ered 4 X 10* realizations except for the largest system, when
we had at least 10* samples. The distribution of the pseud-
ocritical points is shown in Fig. 4 for both types of disorder.
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FIG. 4. (Color online) Distribution of the pseudocritical points,
6.(L), for various lengths for box-4 randomness (upper panel) and
for fixed-h randomness (lower panel). In the insets the scaled dis-
tributions are shown as a function of y=[6,(L)-6,]L"", see the
text.

The mean value of the critical points is considerably larger
for box-h randomness and also the width of the
distribution—for the same value of L—is larger in this case.
(We note that the same trend is seen in 1D, where 6’5’”:0 and
Ggf)z—l.) Taking into account the result in Eq. (13) the ap-
propriate scaling combination is y=[6,(L)-6,]L"" in terms
of which the scaled distributions, p(y), are shown in the in-
sets of Fig. 4. Here using our final estimates in Egs. (21) and
(22) we obtain excellent scaling collapse of the data points
for both types of randomness. The scaling curves for the two
different disorders approach the same standardized master
curve, which indicates that the fixed point of the RG trans-
formation is unique and (at least for strong enough disorder)
strongly attractive. The master curve is different from that in
1D, which is Gaussian in that case.’> In 2D the maximum of
the curve is shifted to negative values and the distribution is
nonsymmetric. We have calculated the percolation (or span-
ning) probability, P, at the critical point, which is given by
the fraction of samples having finite replica correlation func-
tion at .. It can be expressed with the scaled distribution
function as P,,=[p(y)dy. Our estimate is

P,,=0.149(2), (15)

which is much smaller than for standard 2D percolation.3®
We have also calculated the skewness, s, of the distribution,
which has the value s=0.19(3) for both type of disorder. The
asymmetric form of the distribution indicates that in 2D the
topology of the renormalized model is different from that in
ID. Samples having more strongly connected clusters, thus a
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FIG. 5. (Color online) Scaling of the shift of the finite-size tran-
sition points, calculated from the mean value (+ for “b” and * for
“f”), as well as from the median (X for “b” and [J for “f”) of the
distribution, as a function of L in log-log scale for both type of
disorder. Estimates for 6, are taken from Eq. (22) and the straight
lines indicating the asymptotic behavior have the same slope:
—1/v,=—-0.8. The effective critical exponents calculated from Eq.
(16) are shown in the upper inset (for the mean) and in the lower
inset (for the median).

higher 6.(L), have a somewhat larger weight than the less
strongly connected clusters.

2. Shift of the finite-size critical points

For a fixed linear size, L, we have calculated the mean
value, 60.(L), as well as the median B'C“ed(L) of the pseud-
ocritical points. Since the distribution is nonsymmetric these
two characteristic values are not identical, however both are
expected to follow the scaling form in Eq. (13) with the same
value of the shift exponent, v,. This is illustrated in Fig. 5 in
which 6,-6,(L) as well as 6,— H‘C“ed(L) is shown as a function
of L in a log-log scale for both type of disorder. Having
appropriate limiting values for 6,, see Eq. (22), the points in
Fig. 5 are asymptotically very well on straight lines (both for
the mean value and for the median) having approximately
the same slopes: —1/v,~-0.8.

To get more quantitative estimates we have calculated ef-
fective, size-dependent shift exponents which are defined as

I P(zm—@(m}
n(L) T 2| 6.L) - 0L12)

(16)

and similarly for the median values. These are shown in the
two insets of Fig. 5 as a function of 1/L (upper inset for the
mean) and In L (lower inset for the median), respectively.
The exponents calculated from the mean values show 1/L
correction terms for both type of disorder, although with dif-
ferent signs. The extrapolated values are l/vg,b)=0.79(2) and
1/1{@:0.81(2), which agree within the error of the calcula-
tion and leads the estimate: 1/v,=0.80(2). As seen in the
lower inset of Fig. 5 the effective exponents calculated from
the median of the distribution have weaker 1/L dependence,
instead they show log-periodiclike variations. The estimates
for 1/v, from these data are compatible with the previous
estimates obtained from the mean values, thus we can write
our estimate of the shift exponent

v,=1.25(3). (17)
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FIG. 6. (Color online) Standard deviation of the distribution of
the pseudocritical points as a function of the size in log-log plot for
box-h (upper points) and fixed-A (lower points) randomnesses. The
dotted (blue) straight line has a slope: 1/,,=—0.808 corresponding
to the estimated value. Inset: finite size estimates for the exponent,
1/v,, plotted as a function of 1/L.

3. Scaling of the width of the pseudocritical points

We have measured the standard deviation of the distribu-
tion of the pseudocritical points, A6,.(L), which are shown in
Fig. 6 as a function of the linear size, L, in a log-log scale. In
agreement with the scaling prediction in Eq. (14) the points
in Fig. 6 are asymptotically on straight lines, the slope of
which is approximately the same for both types of disorder
and can be well fitted as —1/v,,~-0.8. As for the shift ex-
ponent in Sec. IVC2 we have measured effective, size-
dependent critical exponents, which are defined as

A6,2L) - A6 (L2) | 1

=sinh™!| - — (1
s 200,(L) ma U

v, (L)

and plotted in the inset of Fig. 6 as a function of 1/L. Ex-
trapolating the effective exponents yields 1/ vif):0.805(10)
and 1/1=0.811(10) for the box-k and the fixed-k random-
nesses, respectively. These values indeed agree within the
error of the calculation, thus we can conclude that 1/v,
=0.808(10) and thus

v, =1.24(2). (19)

Comparing our estimates for the shift exponent in Eq. (17)
with that of the width exponent in Eq. (19) we notice that
they agree within the error of the method, which corresponds
to the renormalization group result for a classical conven-
tional random critical point.”® In order to make a direct check
of the equivalence of the two exponents we have formed the
ratio

00 - E(L)

a(L) = NoAL)

(20)
which should approach an L-independent constant value at
the “true” critical point, 6,, provided v,=v,. In Fig. 7 we
have plotted the a(L) ratios as a function of In L using dif-
ferent input values for the critical point, 6,. As one can see in
this figure the L dependence of a(L) is very sensitive to the
input value of 6., both for box-h and fixed-4 randomnesses,
but at its right value the a(L) ratios are approximately L
independent. In this way we have demonstrated that the
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FIG. 7. (Color online) The ratio in Eq. (20) as a function of In L
for different input values of the critical point, 6. At the true critical
point a(L) is approximately L independent. Upper panel: box-h
randomness and 6, varies equidistantly between 1.6786 and 1.6782
from up to down; lower panel: fixed-4 randomness and 6, varies
equidistantly between —0.17030 and —0.17038 from up to down.

infinite-disorder fixed point of the 2D RTFI model is charac-
terized by one correlation-length exponent, which is given by

v=1.24(2). (21)

Furthermore the ratio in Eq. (20) at the critical point has the
universal value: a=1.15(2), which does not depend on the
form of the randomness. Finally, by this method we have
obtained accurate estimates for the true critical points, which
are given by

6" =1.6784(1),

69 =-0.17034(2). (22)

We have checked that the values in Eq. (22) are consistent
with other estimates, which can be obtained by extrapolating
the 6,(L) data through Eq. (13), but the error bars are
smaller. For the box-i disorder the known estimates are
¢*)=1.676(5) in Ref. 18 and 6*)=1.680(5) in Ref. 17, which
are consistent with that in Eq. (22), however the present
value has much smaller uncertainty.

V. SCALING AT THE CRITICAL POINT

Having accurate estimates of the critical points for both
types of randomness we are ready to study the critical be-
havior of the system. In this respect we have concentrated
our effort at the critical point, where we have studied the
distribution function of the magnetization, as well as that of
the (log) gaps and calculated critical exponents by finite-size
scaling. At the critical point we have considered finite sys-
tems up to a linear length L=2048 and studied 4 X 10* real-
izations for each sizes.

These investigations are supplemented with numerical
studies outside the critical point, both in the disordered and
in the ordered phases. For the magnetization we have studied
the scaling regime, defined as SL"”=0O(1). To obtain infor-
mation about the dynamics of the system we have studied the
scaling behavior of the excitation energies both in the or-
dered and in the disordered Griffiths phases and in this in-
vestigation we have not restricted ourselves to the vicinity of
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FIG. 8. (Color online) Distribution of the mass of the spin clus-
ters in a log-log scale for the L=1024 system at the critical point
calculated from 40 000 samples for the box-i randomness. The
straight line indicating the asymptotic behavior has a slope —7=
—2.9, see the text. In the two insets the cluster structure is illustrated
for the L=64 system with fixed-k (upper inset) and box-i (lower
inset) randomnesses. The size of the clusters is increasing with the
grayscale (color) as indicated at the bottom of the lower inset. The
one-site clusters are white, the points of the largest cluster are black.

the critical point. In the off-critical region we studied random
samples with fixed-2 randomness up to a linear length L
=512 and for 10 realizations.

A. Magnetization
1. Spin clusters

During renormalization effective spin clusters are formed,
which are then decimated at different energy scales. We il-
lustrate the cluster structure of a given sample at the critical
point in the insets of Fig. 8 in which clusters having the same
size are marked with the same grayscale (color). Note that
most of the clusters consist of only one site and the large
clusters are generally geometrically disconnected. We have
also analyzed the distribution of the mass of the clusters,

P, (1), which follows the scaling form: LYP(uL™), d;being
the fractal dimension defined in Eq. (11). According to scal-
ing theory®® the distribution has a power-law tail, P(u)
~u~", with an exponent 7'=1+dif. The scaling function for
L=1024 is shown in Fig. 8 in a log-log scale and indeed it
has a linear dependence with a slope 7=2.9(1), which is
consistent with our estimate for d, in Eq. (24).

The magnetic properties of a given finite sample are re-
lated to the magnetic moment of some effective spin cluster,
which appears at the last stages of the RG procedure. In
principle one can define different types of such spin clusters.
(i) The magnetization cluster has the smallest effective trans-
verse field, thus decimated at the lowest energy scale. The
moment of magnetization clusters are denoted by . By defi-
nition the smallest possible value of the magnetization clus-
ter is i, =1, thus the corresponding minimal magnetization
at the disordered phase is given by 1/L¢, i.e., it varies as a
power law of L. (ii) The correlation cluster with a moment
Mo 18 present in the duplicated sample and involved in the
replica correlation function. By definition a correlation clus-
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FIG. 9. (Color online) Distribution of the moment of magneti-
zation clusters for different lengths. Upper panel: box-# randomness
and lower panel: fixed-2 randomness. The scaled distributions are
shown in the insets, where for the fractal dimension the estimate in
Eq. (24) is used.

ter exists only for §=6,(L), i.e., below the pseudocritical
point of the given sample. We have checked that for large L
if a correlation cluster exists, it is almost always the magne-
tization cluster.

2. Moment of magnetization clusters

We have calculated the distribution functions of the mo-
ments of magnetization clusters for different lengths, R; (),
which are shown in Fig. 9 for both types of randomness.
According to scaling theory R, (jZ)=LYR(ZL ) which is il-
lustrated in the insets of Fig. 9. Up to a multiplicative con-
stant the scaling functions, ﬁ(w), are identical for the two
different randomnesses and can be approximated with an ex-
ponential function: E(w)~exp(—w/ "), " being some
randomness-dependent value.

3. Fractal dimension and critical exponent

In order to obtain an accurate estimate for the fractal di-
mension, df, and for the magnetization exponent, x, we have
calculated average moments of the magnetization clusters,
., which are plotted in the inset of Fig. 10 as a function of
L in a log-log scale. For both types of randomness the points
are asymptotically on straight lines having the same slope,
which is in agreement with the scaling relation in Eq. (10).
We have calculated effective, size-dependent fractal dimen-
sions through
ML _,U~L/2 ] L (23)

2pp

d(L) =sinh™" ,
(L) = sin { -

which are plotted in Fig. 10. As seen in this figure the effec-
tive fractal dimensions show no systematic trend with L and
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FIG. 10. (Color online) Finite-size estimates for the fractal di-
mension of the magnetization cluster in Eq. (23) as a function of
In L for the fixed-h (f) and the box-h (b) randomnesses. The dotted
horizontal line at dy=1.018 represents the mean value and our esti-
mate. In the inset the average moment of the magnetization clusters
are shown as a function of L in a log-log scale for both types of
randomness. The dotted straight line has the slope d as extracted
from the main figure.

the df(L) values spread around the same mean value for both
form of disorder. This mean value is taken to our estimate for
the fractal dimension,

dy=1.018(15) (24)
and from Eq. (11) we have for the magnetization exponent,

x=0.982(15). (25)

4. Scaling of the magnetization

The magnetization is given by the asymptotic value of the
correlation function in Eq. (6), which definition can be ex-
tended in a finite system in terms of the replica correlation
function as introduced in Sec. IV B. In a given sample of
linear size L two spins at a distance r~ L are correlated if
both are in the same correlation cluster. Consequently (the
average value of) the magnetization is given by m(85,L)
:sz,"’, where [, is the average value of the mass of the
correlation cluster as defined in Sec. I. The magnetization as
a function of & is plotted in Fig. 11 for different finite sys-
tems. Using scaling theory the magnetization in the vicinity

o g L=64 +
# . L=128
2 . =256 *
107 . =512 ©
10? ﬁ%* +
E B % *W% g{x ) N
| 10°F Ea .
10 ’XE, .
102 | % 0¥ N
5
6| 10°C \ L ; '
10°r 20 40 o 10 7«
BL1/V
-0.03 -0.02 -0.01 s 0 0.01 0.02

FIG. 11. (Color online) Magnetization as a function of the con-
trol parameter in the vicinity of the critical point for different finite
systems. In the inset the scaled magnetization m(8,L)L" is plotted
as a function of SL!”.
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of the critical point is expected to behave as m(d,L)
=L7m(SL""). To test this assumption in the inset of Fig. 11
we have plotted m(8,L)L* as a function of SL"”. Using the
estimates for the critical exponents in Egs. (21) and (25) an
excellent scaling collapse of the data is obtained.

B. Dynamical scaling

Here we study the properties of the low-energy excita-
tions, which are responsible for the dynamical behavior of
the system, such as the autocorrelation function or the low-
temperature and small-field behaviors of the susceptibility,
specific heat, magnetization, etc. Such a low-energy collec-
tive excitation of a random sample of linear length L has an
excitation energy, €;, which is defined differently, for 6
< 6.(L) and for 6> 6,(L). In the latter case €, is just the
energy scale at the last decimation step. On the contrary for
0< 6.(L) the sample is locally in the ordered phase and there
is a correlation cluster in the system. In the thermodynamic
limit flipping of the huge correlation cluster requires vanish-
ing energy and thus ¢, is related to the second gap. Adopting
this definition for a finite sample we identify ¢; as the small-
est energy scale, not considering the effective transverse field
of the correlation cluster. According to the scaling relation in
Eq. (5) at the critical point it is convenient to use the log
variable: y; =—In(¢;). In the following we study the distribu-
tion of 7y, at the critical point, as well as in disordered and
ordered Griffiths phases, and investigate its scaling behavior
with L. As far as dynamical properties are considered the
SDRG method gives asymptotically exact results also in the
off-critical region, where the relaxation time is divergent.’’
This is not the case for static quantities due to the finite
correlation length.

1. Critical point

The distribution of the log-excitation energies at the criti-
cal point for different sizes is shown in Fig. 12 for the two
types of randomness. As seen in this figure the distributions
broaden with increasing L, which is a clear signal of infinite-
disorder scaling. Referring to Eq. (5) we introduce the scal-
ing combination: ¥=(y,—¥,)L™%, in terms of which the dis-
tributions collapse to the same curve provided the exponent
is y=0.48. This is illustrated in the insets of Fig. 12. The
constant term, 7y, used in the fitting process is found to be
O(1) and has only a little influence on the value of the ex-
ponent . The scaling functions in the insets of Fig. 12 have
the same form for the two types of applied randomness and
have a heavier tail than in 1D. The skewness values at L
=1024 are s=0.82(1) for 2D to be compared with s
=0.64(1) in 1D.

In order to obtain more accurate estimate for the exponent
¢ we have considered the mean value, (L), as well as the
standard deviation, Ay(L), of the distributions. We have
formed the differences, d1(L), which are d1(L)=%(L)
—Y(L/2) for the mean and d1(L)=Ay(L)—Ay(L/2) for the
width of the distribution, respectively, and which are plotted
in the inset of Fig. 13 as a function of L in a log-log plot. As
seen in this figure the points for the two quantities and for
the two types of randomness are on parallel straight lines the
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FIG. 12. (Color online) Distribution of the log-excitation ener-
gies at the critical point for different finite systems. Upper panel:
box-h randomness and lower panel: fixed-# randomness. In the in-
sets scaling collapse of the distributions in terms of = (y—y,)L ™"
are shown, with =0.48. The constant is y,=—1.5(4) for box-h
randomness and y,=-0.4(1) for fixed-h randomness, respectively.

slope of which is compatible with ¢/=0.48. In the next step
we have calculated finite-size effective exponents through
the definition

1 [a12n)
L) = EIH{T(L)] (26)

which are plotted in Fig. 13 as a function of L. As seen in
this figure there is some systematic trend of the points up to
L=128-192 but for larger L’s there are only fluctuations
around a mean value what we use as an estimate for the
exponent
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FIG. 13. (Color online) Effective exponents (L) as a function
of In L calculated from the mean or from the width of the distribu-
tion of the log-excitation energies for the two types of randomness.
Inset: finite differences of the mean and the width of the log-
excitation energy distribution as a function of L in a log-log scale,
see text. The slope of the dotted straight line is given by ¢=0.48.
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FIG. 14. (Color online) Distribution of the log-excitation ener-
gies in the disordered Griffiths phase (at §=9.64 X 1073) in a log-lin
scale for different sizes. The slopes of the straight lines indicating
the tail of the curves are d/z=2.5(2), 2.1 (2), 2.1 (2), and 2.1(2) for
L=64, 128, 256, and 512, respectively. In the inset the scaled dis-
tributions are shown in terms of the variable in Eq. (29) with d/z
=2.3(2), which is well described by the Fréchet distribution (full
line) in Eq. (30).

#=0.48(2). (27)

This limiting value is the same for both types of randomness
and describes well the scaling behavior both the mean value
and the width of the distribution.

2. Disordered Griffiths phase

In the disordered Griffiths phase the energy gap in a large
system is given by the effective transverse field of the spin
cluster, which is decimated at the last step of the renormal-
ization process. The scaling behavior of the low-energy ex-
citations here is different from that at the critical point. We
illustrate the scaling behavior of the distribution of the log-
excitation energies for different sizes in Fig. 14 for the
fixed-2 randomness at a distance =9.64X 107> from the
critical point. As seen in this figure the shape of the (loga-
rithm of the) distribution functions is very similar for differ-
ent L’s and the curves are merely shifted with In L. This
follows from the assumption that the typical value of the
excitation energy in a system of size L scales as a power law

€~ L_Za (28)

z being the dynamical exponent, which is a continuous func-
tion of the control parameter, §>0.3 Consequently the ap-
propriate scaling combination is

y=vy,—zIn(L) -y (29)

in terms of which the distribution functions have a scaling
collapse, provided the appropriate value of the dynamical
exponent is used. This is illustrated in the inset of Fig. 14. An
estimate for the dynamical exponent from the shift of the
distributions, z,,(L), can be obtained from the optimal col-
lapse of the data points for sizes L/2 and L. In Fig. 14 we
have d/z,(512)=2.3(2). If the low-energy excitations in the
system are localized then the scaled distribution function is
suggested®® to be given by the Fréchet distribution known
from extreme value statistics*” in the form
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FIG. 15. (Color online) Estimates for 2/z at different points of
the disordered Griffiths phase in a log-log plot. The estimates are
calculated either from the shift of the distributions or from their tail
at various finite sizes. The straight line with a slope 0.6 indicates the
asymptotic behavior as given in Eq. (31). In the inset data for the
largest system, L=512, are compared with the scaling curve in Eq.
(31) with ¢=36.5 in linear plot.

d
In p(¥=vy) =— gi— exp(— 7;) +1n(d/z7). (30)

Indeed the scaled distribution function in the inset of Fig. 14
is well described by the function in Eq. (30), where only one
fitting parameter, vy, in Eq. (29) is used. We note that for
large ¥ the tail of In p(%) is linear and its slope, —d/zy(L),
can be used to obtain an independent estimate for the dy-
namical exponent. The measured values of d/z,(L) are given
in the caption of Fig. 14 and these are compatible with those
calculated from the shift of the distributions. There are, how-
ever finite-size corrections for L <&, where the correlation
length at the studied value of & is on the order of ¢
=0(10%).

We have repeated the previous calculation for several val-
ues of ¢ in the disordered Griffiths phase and calculated es-
timates for the dynamical exponent both from the shift of the
distributions and from the slope of the tail. These estimates
obtained at different L’s are shown in a log-log plot in Fig.
15. One can notice that the finite-size corrections are stronger
for small &’s, where the correlation length is comparatively
larger. According to scaling theory?? the dynamical exponent
for small & behaves as

d
—=cd (31)
Z

and divergent at 6=0. We have checked the relation in Eq.
(31) and indeed in Fig. 15 one can identify an approximately
linear part for 6=0.02 having a slope =0.6. This value is
compatible with our previous estimates vi/=0.60(6) using
results in Egs. (21) and (27).

Closing this section we note that the dynamical exponent
enters into the singularities of different physical quantities.
For example, at low temperature the susceptibility behaves
as x(T)~ T%! and the specific heat has the form C,~ T%~.
More details about the scaling relations in the Griffiths phase
can be found in Refs. 22 and 41.
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FIG. 16. (Color online) Distribution of the log-excitation ener-
gies in the ordered Griffiths phase (at 6=—1.916 X 1072) in a log-lin
scale for different sizes. In the inset the scaled distributions are
shown in terms of the variable in Eq. (32).

3. Ordered Griffiths phase

In the ordered phase of a large system with 6<<O there is
a huge magnetization cluster, which is decimated at the last
step of the renormalization procedure. The energy gap in a
large system is given here by the value of the effective pa-
rameter decimated in a step before. The distribution of the
log-excitation energies for different sizes are shown in Fig.
16 for the fixed-h randomness at 5=—1.916 X 1072, Compar-
ing the distributions with that of the disordered Griffiths
phase in Fig. 14 one can notice that in both cases the distri-
butions are not broaden but shifted with an L-dependent
amount. There are, however, several differences in the two
figures. In the ordered Griffiths phase the finite-size effects
are stronger, therefore we went up to L=1024. More impor-
tantly, the shift of the distributions in the ordered Griffiths
phase is slower than linear with In L. This is connected to the
scaling result that the typical value of the excitation energy,
€. is related to the size of the system as In €, ~—In""(L),
thus the appropriate scaling combination is*?

y=vy,—-AIn"(L) -y, (32)

which is to be compared with Eq. (29). Indeed using the
variable in Eq. (32) the distributions show a scaling collapse,
as illustrated in the inset of Fig. 16.

Also the shape of the scaled distributions is different in
the two Griffiths phases. In the disordered Griffiths phase the
distributions in the inset of Fig. 14 approach a linear asymp-
totics from above, on the contrary in the ordered Griffiths
phase in the inset of Fig. 16 the points bend below a straight
line. This is compatible with the scaling result that
asymptotically*?

Inp(¥) ~-7". (33)

Our data in the inset of Fig. 16 are still not in the asymptotic
regime but the tail of the distribution clearly decreases faster
than linear for the large sizes.

VI. DISCUSSION

The concept of infinite-disorder fixed point has been in-
troduced quite recently’ and its basic properties have been
demonstrated in partially exact calculations in different one-
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dimensional random  quantum*%%° and  stochastic

systems.'"!% In higher dimensions, in particular, in two di-
mensions the calculations are numerical and have only lim-
ited accuracy.'>"!? In the present paper we have considered
the prototypical model in 2D having an IDFP the random
transverse-field Ising model and studied its critical properties
by a numerical implementation of the SDRG approach. As
follows from the concept of IDFP our numerical results are
expected to be asymptotically exact.

In our approach we have used a very efficient computa-
tional algorithm which made us possible to treat samples
which are ten times larger in linear size, compared with pre-
vious calculations. In this way we could reduce the effect of
finite-size corrections and could also study off-critical prop-
erties, such as scaling functions and dynamical scaling in the
disordered and ordered Griffiths phases.

The main results of our investigations are the following.
We have extended the finite-size scaling study for pseud-
ocritical points and from their distribution we have obtained
precise estimate for the correlation-length critical exponent,
which has been shown to govern both the shift and the width
of the distribution. Using different types of randomness we
have demonstrated that the IDFP is universal, the critical
exponents as well as the critical scaling functions are inde-
pendent of the randomness used in the calculation. We have
also studied crossover phenomena with respect of the linear
size of the system as well as the type of randomness used in
the calculation. The sometimes large errors and deviations
between the results of previous numerical studies are pre-
sumably due to crossover effects. This can be seen, e.g., in
Fig. 13 where the estimates of the exponent ¢ have strong
finite-size as well as randomness-type dependence.

As a result of the larger samples and the good statistics of
the numerical data we have obtained accurate estimates for
the critical exponents and studied the behavior of scaling
functions, both at the critical point and in the finite-size scal-
ing limit in the vicinity of the critical point. We have also
extended our investigations to the disordered and the ordered
Griffiths phases and have checked various predictions of
phenomenological scaling theory.

Comparing the critical behavior in 1D to that in 2D we
have qualitatively similar results but there are also important
differences. First of all the actual values of the critical expo-
nents as well as the form of the scaling functions are differ-
ent. Scaling in the ordered Griffiths phase, which involves
powers of d in Egs. (32) and (33) however, is also qualita-
tively different. One particular feature of the model in 1D is
self-duality, which could be the reason why in 1D the distri-
bution of the pseudocritical points involves different shift
and mean exponents.®

Our calculations can be extended to several directions.
One possibility is to study the entanglement properties of the
model** which can be well performed within the frame of the
SDRG approach.** At present conflicting theoretical predic-
tions are available about the finite-size dependence of the
critical entanglement entropy,'®!” which could be possibly
clarified by using larger systems in the calculation. A second
promising direction of application of our approach is to con-
sider higher dimensional systems. At present even in three
dimensions only the existence of infinite-disorder scaling is
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FIG. 17. (Color online) Illustration of the neighborhood of an
irrelevant bond (i,) having a majorating triangle (i,j,k). The val-
ues of the log couplings and the log-transverse fields are also indi-
cated, see the text.

demonstrated'® but no estimates are known about the critical
exponents. In four and higher dimensions no numerical stud-
ies have been performed so far. Studies in these directions
are in progress.
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APPENDIX: FILTERING OUT IRRELEVANT BONDS

In the SDRG procedure if the maximum rule is applied
several bonds are irrelevant, which means that they can be
deleted without modifying the final result of the renormaliza-
tion.

1. Condition for a bond to be irrelevant

Let us consider a bond with a log coupling «;;=In J;; be-
tween sites i and j and consider such nearest-neighbor points,
one of those is denoted by k in Fig. 17, which has bonds both
to i and j of strength «; and «j, respectively. The triangle
(i,],k) is called the “majorating triangle” of the (i, ;) bond if
K;j is the smallest bond in the triangle, and it is also smaller
than the potentially generated new bond: =Ky + K= 6,
where 6,=In h; is the log-transverse field at site k. If such a
majorating triangle exists then the bond is irrelevant.

2. Proof of the filtering criterion

For the proof it is enough to consider such a decimation
step during which the majorating triangle collapses and we
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follow also the evolution of the parameters in another tri-
angle, (i,/,[), which is not necessarily a majorating one. The
maximal log parameter in the four-site system in Fig. 17 is
denoted by w. We note that during renormalization the log-
transverse fields cannot increase, thus the change in their
values is unimportant in the proof.

a. Bond decimation

The (i,/) bond is not the largest one, since it has a majo-
rating triangle, so that for the position of the largest bond we
have three different cases. (i) Largest bond in the majorating
triangle: w=ky (or ;). The spins i and k fuse into a new
effective spin, which is connected to the spin j with a cou-
pling of «’=max(k;;, k)= Ky, thus, «; simply disappears.
(ii) Largest bond in the another triangle: w=k; (or ;). The
J and [ spins fuse into a new effective spin. If «;;< ;;, then
the value of «;; simply disappears, otherwise its value does
not change. Similarly, the value of «;; does not change while
Kj is replaced by «j=max(xj;, k1) = K. Taken all round,
the new (i,j,k) triangle is a majorating triangle of the (i, )
bond. (iii) Largest bond between the two triangles: w= ky;.
The spins k and [ fuse and there is one triangle left. Here the
value of «;; does not change and the new triangle is a majo-
rating one of the (i,/) bond.

b. Site decimation

We should consider two different cases: (i) w=6: K,.'j
=Kyt Kj— 6> K;; due to our assumptions, thus «;; disap-
pears without affecting the results. (ii) w=6; (or 6, analo-
gously): K= k;;+Kiy— 0;= K;;< Ky, thus this coupling is un-
affected by the «;; coupling. However, in principle the other
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newly generated bonds are not irrelevant, e.g., K;l< Kj; is not
always fulfilled. Due to this, the effect of the majorated (i, f)
edge will not certainly disappear after one single decimation
step in which it is involved. Moreover, a lot of new couplings
can be generated occasionally, if the bond lies in a dangerous
position.

c. Completing the proof

Here we show that the newly generated coupling in the
(1,j,k) triangle, Kjf,, is always majorated by this triangle. The
two neighboring couplings of K;Z are K (due to the fact that
Ky <) and max(ky, k;;), where ry=ry+ry=0;. Kj is
smaller than these neighboring couplings, namely, Kjfl< Kij
<kj and Ky~ K=Ky~ K;>0. From the latter follows that
K<y, which cannot be greater than max(ky, ;) corre-
sponding to the new value of the coupling between the k and
[ spins. Now we see that the K;l coupling is majorated by the
(1,j.k) triangle, if «, is smaller than the generated coupling
Ky=max(ky, ki) + Kjx— 0, which is obtained by decimating
the transverse field at k. Let us consider their difference:
K= K = K+ K Op— K= K+ 0= K+ Kj— O = K= K= K
>0. Thus the «;, coupling is always majorated by the (/,,k)
triangle.

Let us summarize our findings. If the bond (i,j) has a
majorating triangle, it cannot be decimated directly. Deci-
mating in its neighborhood either this bond disappears or
new couplings are generated, the value of which involves «;;.
These new couplings, however, are always majorated by a
triangle, thus they are never decimated during the renormal-
ization process. Consequently the value of «;; does not influ-

ence the result of the renormalization.
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